Package: npmlda 1.2.0

npmlda: Non-Parametric Models for Longitudinal Data Analysis

Support the book: Wu CO and Tian X (2018). Nonparametric Models for Longitudinal Data: With Implementation in R. (Chapman & Hall/CRC Monographs on Statistics & Applied Probability); Present global and local smoothing methods for the conditional-mean and conditional-distribution based nonparametric models with longitudinal Data.

Authors:Xin Tian, Colin Wu

npmlda_1.2.0.tar.gz
npmlda_1.2.0.zip(r-4.5)npmlda_1.2.0.zip(r-4.4)npmlda_1.2.0.zip(r-4.3)
npmlda_1.2.0.tgz(r-4.5-any)npmlda_1.2.0.tgz(r-4.4-any)npmlda_1.2.0.tgz(r-4.3-any)
npmlda_1.2.0.tar.gz(r-4.5-noble)npmlda_1.2.0.tar.gz(r-4.4-noble)
npmlda_1.2.0.tgz(r-4.4-emscripten)npmlda_1.2.0.tgz(r-4.3-emscripten)
npmlda.pdf |npmlda.html
npmlda/json (API)

# Install 'npmlda' in R:
install.packages('npmlda', repos = c('https://npmldabook.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/npmldabook/npmlda/issues

Datasets:

On CRAN:

Conda-Forge:

2.70 score 8 scripts 148 downloads 21 exports 0 dependencies

Last updated 6 years agofrom:445f2085b5. Checks:1 OK, 7 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 16 2025
R-4.5-winWARNINGFeb 16 2025
R-4.5-macWARNINGFeb 16 2025
R-4.5-linuxWARNINGFeb 16 2025
R-4.4-winWARNINGFeb 16 2025
R-4.4-macWARNINGFeb 16 2025
R-4.3-winWARNINGFeb 16 2025
R-4.3-macWARNINGFeb 16 2025

Exports:CVlmCVsplineDXikernel.fitKernel2DKernel3DKernel3D.S2Kh.BwKh.EpKh.NmKh2DKh3DLocalLmLocalLm.BetaLocalLm.Beta.t0LocalLm.X0Newton1varNewton2varNW.WtKernelspline.fitXi

Dependencies: